Energy storage and other options for balancing demand and supply as key technologies for the transition of the electricity system assessed with an interdisciplinary project group

Bert Droste-Franke

Europäische Akademie zur Erforschung von Folgen wissenschaftlichtechnischer Entwicklungen Bad Neuenahr-Ahrweiler GmbH

Structure

- 1. The Project "Energy Storages and Virtual Power Plants"
- 2. Roughly Estimating Balancing Requirements in Future Electricity Systems
- 3. Technology Options Competition, Ranking and Future Viability
- 4. Results on Framework Conditions
- 5. Conclusions

1. The Project

"Energy Storages and Virtual Power Plants"

Main data to the interdisciplinary project

Task: Interdisciplinary analysis of strategies for balancing electrical energy at a high penetration of renewable energies in power production

Project group:

- Priv.-Doz. Dr. rer. pol. Dietmar Lindenberger, Köln
- Professor Dr. jur. Boris P. Paal, Freiburg
- Professor Dr.-Ing. Christian Rehtanz, Dortmund
- Professor Dr. rer. nat. Dirk Uwe Sauer, Aachen
- Professor Dr. jur. Jens-Peter Schneider, Freiburg
- Professor Dr. Miranda Schreurs, Berlin
- Professor Dr. rer. pol. Thomas Ziesemer, Maastricht

Europäische Akademie:

- Dr.-Ing. Bert Droste-Franke, Dipl.-Phys. (Co-ordinator)
- Dr. rer. nat. Ruth Klüser, Dipl.-Chem.

Duration: 1/09-12/11

Funding: German Aerospace Center (DLR)

2. Roughly Estimating Balancing Requirements in Future Electricity Systems

Challenges with much wind and photovoltaic power in the system: Balancing longer periods with gaps/excess

Load and wind power in Vattenfall high voltage grid (01.02.-06.03.2008)

Necessary storage capacity for continuous delivery of mean power (pumped hydro today: ≈ 40 GWh (7 GW) in Germany,

≈ 90 GWh

worldwide

Further Challenges: Balancing short-term fluctuations

Spatial distribution of power production/demand

Source: SRU 2010 ("100% regenerative Stromversorgung in Deutschland 2050")

Approach in system analysis of transition

- General approach:
 Anlysis of target situation + framework conditions today
- Scenarios with high share of wind and solar power
 - highest requirements for balancing electricity
- Consistency of estimations:
 harmonised parameters, oriented at existing studies
- Handling high uncertainties:
 - Intention to only estimate orders of magnitude
 - Sensitivities are considered via different assumptions

Results for Germany based on the analysis of existing scenarios

- Balancing Power required:
 2040+ at maximum: +18/-24 GW on average, 35 GW peak
- Balancing Capacity required for one case:
 1700 GWh at maximum (218 hours with 80% decrease of installed power) (other studies: ≤ some 10 TWh storage size)
- Transmission grid:
 3000 km extension required until 2040+ with costs of about
 6 to 8 billion €
- Distribution grid (demand side management (DSM)):
 Costs due to required cables and transformers of more than
 1000€ per household from 2020 are awaited

Modelling the target system for Europe

First results of the Europe model, realised after the end of the project

	Short-	Long-
	term	term
	storage	storage
Storage	2	320
capacity [TWh]		
Discharging	230	710
power [GW]		
Charging	480	570
power [GW]		

Source: Thien et al. 2012

3. Technology Options – Competition, Ranking and Future Viability

	Energy storages			Typical Time Scale/Energy-to-Power Ratio			
				"Seconds-to-minutes"	"Daily"	"Weekly to monthly"	
)	< 15 min1–10 hrs.		50–500 hrs.	
	power	Modular, Double- use	1 kW– 1 MW	Batteries at stationary PV E-, hybridvehicles			
	construction / typical	Modular	1 kW– 100 MW	Fly-Wheel Redox-Flow-Battery (?) Capacitors			
	Type of co	Central	100 MW– 1 GW		Compressed Air Pumped hydro	Hydrogen Source: Sauer 2010	

	Positive control power			Typical Time Scale/Energy-to-Power Ratio			
			OWOr	"Seconds-to-minutes"	"Daily"	"Weekly to monthly"	
			OWEI	< 15 min.	1–10 hrs.	50–500 hrs.	
	power	Modular, Double- use	1 kW– 1 MW	Demand Side			
	construction / typical	Modular	1 kW– 100 MW		Bio Gas Po	ower Plants Source Investigation of the control of	
	Type of co	Central	100 MW- 1 GW	- Rotating masses - Steam reserve		- Lignite - Nuclear power dro Storage ower Plants	

N	Negative control power		Typical Time Scale/Energy-to-Power Ratio			
			"Seconds-to-minutes"	"Daily"		"Weekly to monthly"
			< 15 min.	1–10 hrs.		50–500 hrs.
power	Modular, Double- use	1 kW– 1 MW	Demand Side			
construction / typical	Modular	1 kW- 100 MW	Curtailing		Produci	ing Gas (power2gas)
Type of co	Central	100 MW– 1 GW				Source: Pixelio 2012

Cost ranking of technological options

(rough estimates on prices in about 10 years in €ct/kWh in brackets)

- "Long-term storage": hydrogen (10), pumped hydro (5-10)
- "Load levelling": pumped hydro, compr. air (CAES) (<5)
- "Peak shaving in distribution grid": batteries (mostly 5-10)
- Also to be taken into account:
 - Double use options (e.g., e-mobility, storages at pv)
 - Demand side management (about 10 GW in Germany)
 - Curtailing wind und pv in extreme situations
 - Option overcapacity of wind/pv + network extension
 - (Reliable electricity supply from renewable energies)

Aspects of future viability

- Environmental effects in 2050 (life cycle screening)
 - Small effects from applications of energy storages (e.g. external costs ≈0.02-0.3 ct/kWh_{el}, lead battery: ≈0.5-1.6 ct/kWh_{el})
 - SO₂ from production processes gains in importance
- Resource use metals
 - to be monitored / recycled / exchanged
 - Availabilities should be monitored:
 - Reserves/resources
 - Price changes
 - Geographical concentration delivery and supply
 - High recycling rates should be realised and alternatives be analysed

4. Results on Framework Conditions

Market conditions and politics

- Regulative Clarifications (definitions, attribution)
- International Networking

 (international solutions, networks, electricity market)
- Long term boundary conditions
 (low-carbon targets, boundary conditions)
- Improvement of system analysis for policy support (extended, coordinated, continuous, monitoring, European perspective)

Funding

- Removing Historical Heritage of Regulations (long-term, short-term)
- Technology neutral support of new technologies
 (temporally limited start up-subsidies, compensating external effects, R&D)
- Merging externalities to costs and returns
 (internalising system service costs, business models, implement coordination between measures)

Large scale projects

Network extension

(planning procedures: acceleration, (inter)national aspects, regulator: accept R&D costs)

Handling opposition

(participation of affected parties and wider public, planning regime underground resources, further measures for conflict resolution)

Decentralised technologies

- Realising technical potentials

 (automised solutions, flexible tariffs, minimising data requirements, adequate legal regulations for data protection)
- Handling new complex markets
 (contractual challenges, general regulations)

Conclusions

- Interdisciplinary analyses with an "EA-project group" can be applied to get further insights in the some important correlations for the transition of energy systems
- Relevant statements are possible on basis of existing studies/data with rough analyses carried out in the project:
 - The requirement for balancing increases and a heterogeneous mix of technological options will prospectively be applied
 - A first ranking of options is derived and further discussed
- Framework conditions could be identified which should be improved already today – to go into the "right" direction
- Interdisciplinary analyses should be further extended and carried out continuously accompanying the transition process

Thank you for your attention!

Europäische Akademie

zur Erforschung von Folgen wissenschaftlich-technischer Entwicklungen Bad Neuenahr-Ahrweiler GmbH

Dr.-Ing. Bert Droste-Franke, Dipl.-Phys.

Wilhelmstr. 56 53474 Bad Neuenahr-Ahrweiler

Tel. +49 (0) 2641 973-324

Fax +49 (0) 2641 973-320

bert.droste-franke@ea-aw.de www.ea-aw.de