

Precautionary design of new nanomaterials

The European Technology Assessment Conference: "Technology Assessment and Policy Areas of Great Transitions"

Dipl. Ing. Michael Steinfeldt, Universität Bremen Prague, 15th March, 2013

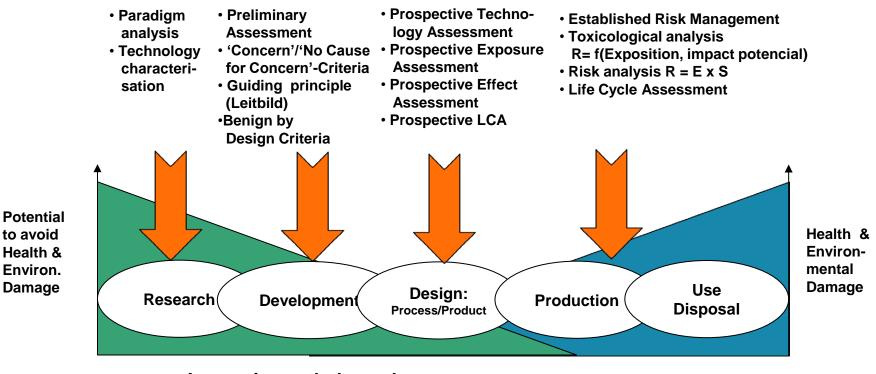
NanoSustain: Objectives and specific nano applications

- Collect and validate existing and generate new and missing data on hazard, exposure, toxicology and ecotoxicology of selected nanomaterials
- Improve and adapt existing methods and develop new approaches, criteria and guidelines for hazard characterisation, risk and life-cycle assessment appropriate to nanomaterials

- Explore and develop innovative solutions for the sustainable use, reuse, recycling and final treatment/disposal of selected nanomaterials and products
- Our specific nanomaterials and selected (prospective) applications
 - Nanocellulose as paper additive, industrial thickener, rheology modifier
 - Nano-TiO₂ in paint application
 - Nano-ZnO glass coating as UV-Barrier for glass
 - MWCNT in epoxy plates

Nanotechnologies in early phase of development – problems and/or opportunities?

- Collingridge dilemma (double bind problem) between design options and the availability of reliable impact knowledge
 - Information problem: Great uncertainty and lack of knowledge at an early stage in the product development cycle of next generations of nanomaterials, impacts can't be easily predicted
 - Power problem: Control or change is difficult when the technology has become entrenched
- Established Risk Regulation and Risk Governance Framework (IRCG 2006) are not enough for the implementation of precautionary principle
- We have great possibilities and opportunities to avoid errors and to avoid possible costs
- Customized/new methods and approaches are needed at an early stage in the product development cycle



to avoid

Approaches to technology assessment and engineering design according to the phases of innovation

Increasing path dependency

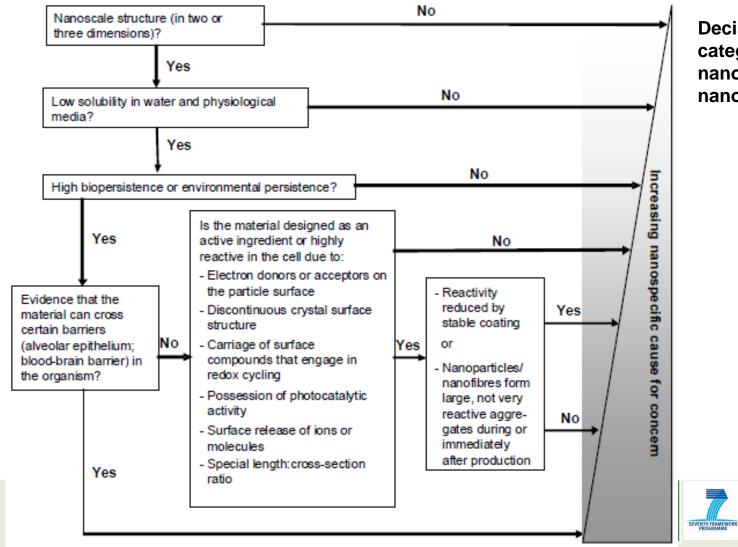
- Capital investment (sunk costs)
- Increasing vulnerability in case of unintended consequences

NanoSustain

- System inertia
- Bounded interests

Criteria for precautionary design and for improved eco efficiency of engineered nanomaterials

- Basis: Literature search to criteria of precautionary design, risk assessment, and recyclability especially guidelines of
 - SRU (German advisory council on the environment),
 - German Nanocommission,
 - Switzerland (Federal Office of Public Health FOPH and Federal Office for the Environment FOEN),
 - German Oeko-Institut,
 - Concept studies of criticality (EU, D, US)
- Set of criteria is derived from the approaches and is supplemented with environmental impact categories of Life Cycle Assessment



Criteria for precautionary design and for improved eco efficiency of engineered nanomaterials

Categories and aspects	Data quality	Source	
Precautionary risk aspects			
Decision tree of risk categorisation	Qualitative	German SRU to precautionary strategies for managing nanomaterials	
Potential exposure of humans	Semi-quantitative	Swiss precautionary matrix for synthetic nanomaterials	
Potential input into the environment	Semi-quantitative	Swiss precautionary matrix for synthetic nanomaterials	
Potential of incident	Semi-quantitative	German Öl Sustainability check, orientation on Swiss precautionary matrix	
Ressource aspects			
Criticality	Qualitative, Semi- quantitative	EU concept of criticality	
Recycling capability / tendency to dissipation	Qualitative	In orientation on German Öl Sustainability check	
Abiotic ressource requirement	Quantitative	Based on Life Cycle Assessment	
Other LCA impact categories			
Energy requirement	Quantitative	Based on Life Cycle Assessment	
Global warming potential	Quantitative	Based on Life Cycle Assessment	
Toxicological potential, but not nanospecific	Quantitative	Based on Life Cycle Assessment	
Ecotoxicological potential, but not nanospecific	Quantitative	Based on Life Cycle Assessment	

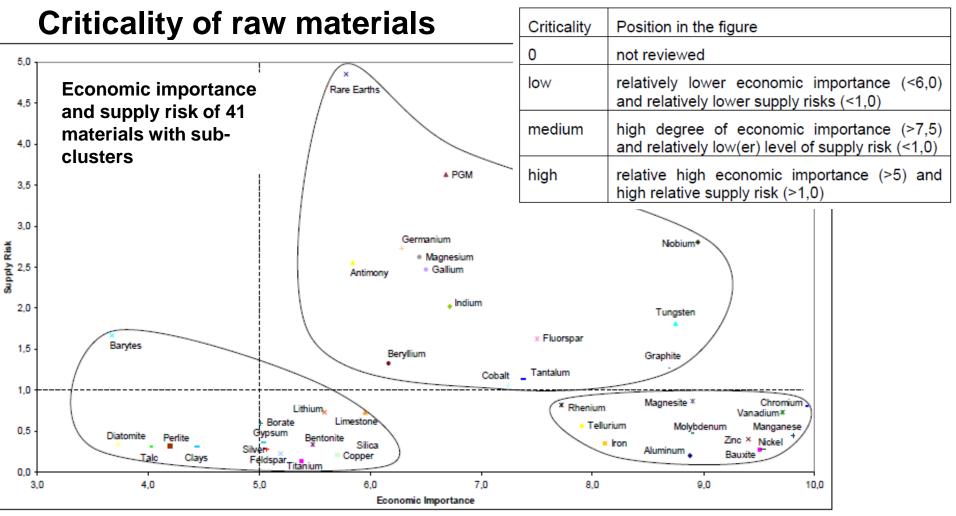
Precautionary Strategies for managing nanomaterials

Decision tree for risk categorisation of nanoparticles and nanofibres

Source: SRU (2011b, 16)

Precautionary Matrix for Synthetic Nanomaterials

Spec. framework- conditions	Tables of relationships and functions for precautionary need for employees	-	Employee	Example: Hardening accelerator X-SEED (BASE	SE)
Potential effect	Tables of relationships and functions for precautionary need for consumers	→	Consumer	Potential exposure of humans →Precautionary need for workers →Precautionary need for consumers reaches	8.1 0.5
Potential human exposure Potential input into the	Tables of relationships and functions for precautionary need for the environment	-	Environment Estimation of precautionary	Potential input into the environment →Precautionary need into the environment Potential of accident →Precautionary need for workers →Precautionary need for the population	9.0 4.5 0.23
environment				Source: Möller et al 2012	

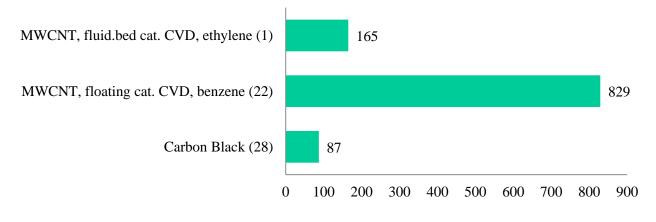

Parameters for estimating the precautionary need

versität Bremen

Source: BAG/BAFU 2011

Score	Classification	Importance
0 - 20	A	The nanospecific need for action can be rated as low even without further clarification.
>20	В	Nanospecific action is needed. Existing measures should be reviewed, further clarification undertaken and, if necessary, measures to reduce the risk associated with manufacturing, use and disposal implemented in the interests of precaution.

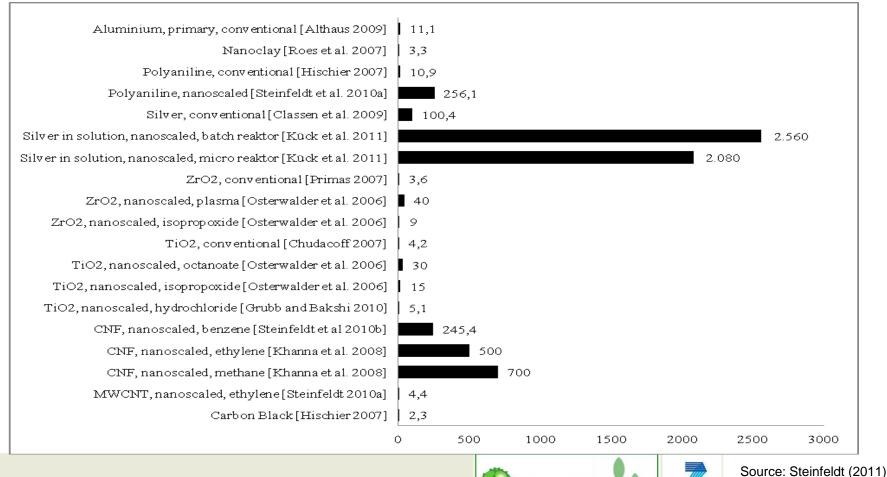
Source: European Commission (2010a 34)



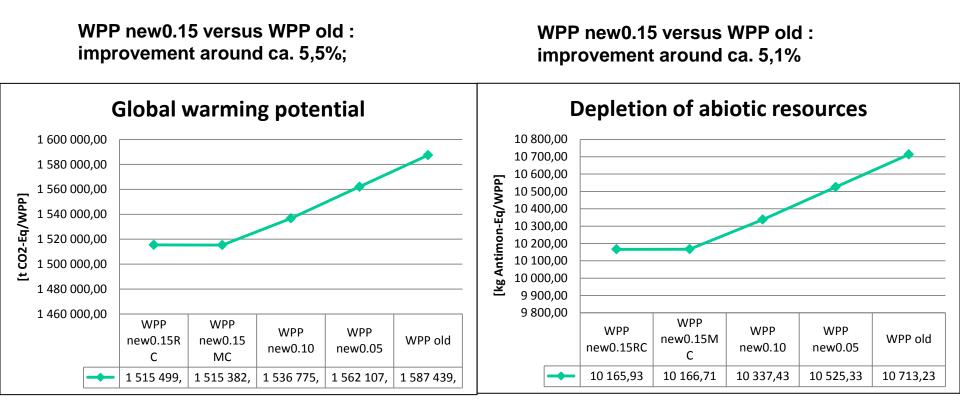
Environmental impacts

		NanoTiO2	TiO2 konv mix
Depletion of abiotic resources	kg Antimon-Eq/kg	0,0353	0,0375
Cumulative energy demand	MJ-Eq/kg	81,95	68,17
Global warming potential	kg CO2-Eq/kg	4,28	4,75
Human Tox potential	kg 1,4-DCB/kg	0,85	0,50
Marine aquatic ecotoxicity	kg 1,4-DCB/kg	2,98	5,07

Comparison of the cumulative energy requirements for various carbon nanoparticle manufacturing processes (MJ-Equivalent/kg material)



Comparison of the global warming potential for the production of various conventional and nanoscaled materials (CO₂-Equivalent/kg product; in parts own calculation)


NanoSustain

SEVENTH FRAMEWORK

Case study: Prospective CNT Composite material, e.g. as rotor blades of wind power plant

The environmental impact through the multiwalled carbon nanotube (production of CNT, preproduction of the materials etc) has a low influence of the balance.

Conclusions

- We need at an early stage of innovation (research and development) of new sustainable nanomaterials and nanoproducts
 - \rightarrow information to risk potentials of nanomaterial and nanoproducts
 - → prospective information to environmental impacts of nanomaterials and to environmental benefits of nanoproducts
- Developed concept includes precautionary risk aspects, ressource aspects, and environmental impact categories
- It's an approach for a ,preliminary assessment' of engineered nanomaterials and nanoproducts

Department 10 – Technological Design and Development

- Head: Prof. Dr. Arnim von Gleich
- Unit: Innovation and Technology Assessment

Dr. Bernd Giese Dipl.-Biol. Stefan Königstein B.Sc. M.A. Christian Pade Dipl.-Ing. Michael Steinfeldt Dipl.-Wi.-Ing. Henning Wigger

Contact: Michael Steinfeldt Mail: mstein@uni-bremen.de Phone: +49-(0)421-218-64891

Selected publications:

- Pade, C.; Gleich, A. von (2012): Prospektive Risikoabschätzung synthetischer Nanopartikel (Prospective risk assessment of synthetic nanoparticles). In: Decker, M.; Grunwald, A.; Knapp, M. (Hg.): Der Systemblick auf Innovation – Technikfolgenabschätzung und Technikgestaltung, edition sigma, Berlin, S.410-414.
- Steinfeldt, M. (2011): A method of prospective technological assessment of nanotechnological techniques. In: Finkbeiner, M. (ed.): Towards Life Cycle Sustainability Management. Springer Dordrecht Heidelberg London New York, p.131-140
- Steinfeldt, M.; Gleich, A. von; Petschow, U.; Pade, C.; Sprenger, R.-U. (2010): Entlastungseffekte f
 ür die Umwelt durch nanotechnische Verfahren und Produkte (Environmental Relief Effects through Nanotechnological Processes and Products). UBA-Texte 33/2010, Dessau.
- German NanoCommission: Responsible Use of Nanotechnologies Report and Recommendations of the German Federal Government's NanoKommission for 2008, Bonn 2009
- Gleich, A. von; Steinfeldt, M.; Petschow, U. (2008): A suggested three-tiered approach to assessing the implications of nanotechnology and influencing its development. In: Journal of Cleaner Production, 16 (8), p.899-909.
- Steinfeldt, M.; Gleich, A.von; Petschow, U.; Haum, R. (2007): Nanotechnologies, Hazards and Resource Efficiency. Springer Heidelberg.
- Steinfeldt, M.; Gleich, A. von; Petschow, U.; Haum, R.; Chudoba, T.; Haubold, S. (2004): Nachhaltigkeitseffekte durch Herstellung und Anwendung nanotechnologischer Produkte (Sustainability effects through production and application of nanotechnological products). Schriftenreihe des IÖW 177/04. Berlin.
- Haum, R.; Petschow, U.; Steinfeldt, M.; Gleich, A. von (2004): Nanotechnology and Regulation within the Framework of the Precautionary Principle. Schriftenreine des IOW 173/04, Berlin

Universität Bremen

